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A problem of major practical interest is the variation with x and t of the statistical 
properties of r(x,t), the distribution of concentration of a contaminant in a cloud 
containing a finite quantity Q of contaminant, released in a specified way a t  t = 0 over a 
volume of order Li. Of particular relevance is the case of relative diffusion (when x is 
measured throughout each realization relative to the centre of mass of the cloud), when 
important properties are L(t) ,  the linear dimension of the cloud, C(X, t), the ensemble 
mean concentration,>(x, t ) ,  the variance of the concentration, andp(y, t ) ,  the distance- 
neighbour function. Much fundamental work has led to a knowledge of the way L 
varies with t ,  but not of the way the other properties vary. Hitherto therefore, predic- 
tion of such variation has normally used unjustifiable empirical concepts such as eddy 
diffusivities, but this is ultimately unsatisfactory, practically as well as theoretically. 
Hence the exact equations have been used to  obtain a quite new description of the 
structure of a dispersing cloud, which it is hoped will serve as a basis for future practical 
work. 

When K = 0 (where K is the molecular diffusivity) the magnitude of p(y,t)  is of 
order &/La for most y, but of order Q/LE when IyI is very small. By a variety of 
arguments it is shown that these facts can be explained (for many, if not all, flows) 
only if the distributions of C and as well as that of p ,  have a core-bulk structure. In  
the bulk of the cloud C and2have magnitudes of order &/La and Q2/Li L3 respectively, 
but there is a core region of thickness decreasing to zero surrounding the centre of mass 
within which they have much greater magnitudes. I n  one case, examined in some 
detail, the magnitudes in the core are of order Q/L; and Q2/L!. 

It is then shown that the core and bulk exist even in the real case when K $: 0. 
In  the real case the core thickness no longer tends to zero but to a constant of order 
A,, the conduction cut-off length. As a consequence almost entirely of molecular 
diffusion acting in the core region, the magnitudes of C and 2 in both the core and the 
bulk decay to zero in a way which depends on the details of the fine-scale structure 
of the velocity field. Several examples of the decay are discussed. 

1. Introduction 
The spread of contaminant in turbulent flows is a major practical problem. It 

would therefore be extremely useful to be able to predict how the statistical properties 
t Permanent address : Department of Applied Mathematics, University of Western Ontario, 

London, Canada. 

0022-1 120/79/4183-6080 $02.00 Q 1979 Cambridge University Press 
I2 F L M  91 



338 P. C.  Chatwin and P. J .  Sullivan 

of I', the distribution of concentration of contaminant in one realization, will vary 
in space and with time for a given release situation in a specific flow. Conceptually, 
the simplest such problem is the dispersion of a cloud of passive contaminant (arising 
from instantaneous release) in incompressible flow, and knowledge of this could in 
principle be used to analyse other problems with more complicated release conditions. 
However theoretical analyses of this problem have usually either used unfounded 
empirical concepts like eddy diffusivities or have considered somewhat artificial 
idealizations of the real problem in which, for example, the ensemble mean of I' is 
taken to be homogeneous in space. In  this paper a partial theoretical description of 
real problems is attempted, using the basic equations without empiricism. The 
description will be exclusively in terms of relative diffusion?; thus the origin of 
co-ordinates will be at the centre of mass of the contaminant distribution throughout 
each realization of the dispersion process. Relative diffusion has the practical advantage 
over absolute diffusion of less smearing during the averaging process so that the 
ensemble means determined from measurements are more closely related to the real 
values of I?. A further advantage a t  high enough Reynolds number in real flows is 
that all of the eddies contributing significantly to relative diffusion lie within the 
inertial subrange. These eddies have a structure of universal form in contrast to the 
energy-containing eddies which largely dominate absolute diffusion (through meander- 
ing) but have a structure determined by the details of the flow geometry. 

Suppose that at t = 0 a quantity Q of passive contaminant is released in an in- 
compressible fluid, and that its initial spatial distribution is the same for each realiza- 
tion of the dispersion. Since the total quantity of contaminant is finite the statistical 
properties of I' are inhomogeneous unlike the situations considered, e.g., by Batchelor 
(1959) and Kraichnan (1974). As will be seen, the magnitudes of the practically 
important properties of I' considered in the present paper can be estimated only by 
allowing for this inhomogeneity. The equation governing r(x, t )  (where, as explained 
above, x is measured relative to the moving centre of mass of the cloud) is 

(1.1) 

where K is the molecular diffusivity, and r = r(x, t) is the fluid velocity relative to 
the velocity of the centre of mass. By incompressibility, 

aria+ v . (rr) = Kv2r, 

v . r  = 0. (1.2) 

Both I' and r are random functions of space and time; in the usual way each can 
be written as the sum of its ensemble mean (denoted throughout this paper by an 
overbar) and fluctuation, viz. 

I' = C + c ,  where C = I?, E = 0; 

r = U+u, where, U = r, U = 0. 

The simplest, and practically most important, statistical properties of I' are C and 
c2; thus the main theme of this paper is the way in which they vary in space and with 
time. One other property of I' will be important in the discussion; this is p(y, t )  where 

- 

t Although, with suitable amendments to definitions, some of the analysis in the paper 
applies also to absolute diffusion. 
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and is a modification of Richardson’s distance-neighbour function (Richardson 1926). 
By mass conservation it follows immediately from (1.4) that 

j -P(Y , t )dV(Y)  = 1, (1.5) 

where, as throughout this paper, the integral is over all space occupied by the fluid. 

measure of this spread is L ( t ) ,  where 
The outstanding feature of a cloud is that (on the average) it spreads. A single 

P ( t )  = 9-11 lX12C(X, t )  d V ( X ) ,  (1.6) 

and is proportional to the trace of the relative cloud dispersion tensor (Batchelor 
1952a). As the result of much work, summarized in § 24 of Monin & Yaglom (1975), 
it  is known that, over a wide range of length scales encountered in nature, L2(t) satisfies 
approximately the law first partly enunciated by Richardson (1926), viz. 

dL2/dt = bs*L* L2 z (&b)3 st3, (1.7) 

where b is a universal dimensionless constant and s is the rate of dissipation of mech- 
anical energy per unit mass. As a consequence of the spreading and of mass conserva- 
tion, the magnitude of C decreases. If the spreading takes place at a uniform rate over 
the whole cloud, it follows further that 

c = O(Q/L3).  (1.8) 

Observations by Townsend (1951) of a hot spot in the approximately isotropic and 
homogeneous turbulence generated by a grid were consistent with (1.8), and showed 
that the distribution of C was approximately self-similar over the spot. Also observa- 
tions of diffusing plumes (summarized on p. 578 of Monin & Yaglom 1975) tend to 
support the two-dimensional analogue of (1.8). 

The distribution of C is not sufficient to give many of the statistical properties of I? 
that are important in practice. With toxic contaminants one is interested, for example, 
in the probability that, a t  a given place and time, a particular concentration is exceeded. 
In order to determine such probabilities one needs, at  the very least, the distribution 
with x and t of 2, which, by (1.3), is the variance of I?. There are no reported observa- 
tions of 2 in clouds but experimental evidence from steady plumes (summarized on 
pp. 236-242 of Csanady 1973) suggests that the distribution o f 2  is self-similar, and 
that 2/Cz has a value a t  the centre which varies significantly from experiment to 
experiment (but is typically somewhat less than 0 - 5 )  and then increases outwards 
(reaching values of order I 0  at distances from the centre of order L).  

As with3, there appear to be no observations of p ( y ,  t )  for clouds [where p is defined 
in (1.4)], but experiments on dye plumes in Lake Huron by Sullivan (1971) show that 
the appropriate analogue of p is, except near the centre, approximately self-similar 
(and indeed Gaussian). Assuming that these observations generalize to clouds, it 
follows from (1.5) that, except near y = 0, 

P(Y,  t )  = 0 ( 1 / ~ 3 ) .  (1.9) 

It is important to realize that in all the observations discussed above the degree of 
spatial resolution of the distributions of I? was limited. 

12-2 
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Although it is known that structure on a scale of the same order of smallness as 
( v K 2 / E ) b ,  where v is the kinematic viscosity, is profoundly influenced by K (Batchelor 
1959; Gibson & Schwarz 1963), it  is not known how K influences the overall char- 
acteristics of a finite cloud of contaminant. Important such characteristics are the 
magnitudes and distributions of the statistical properties defined above. The aim of 
this paper is to investigate such questions without invoking unjustified concepts like 
eddy diffusivities. In  $9 2 and 3 the investigation is for a cloud of marked fluid particles 
for the reason that it is important first to try to understand the simpler (though 
admittedly unrealistic) problem arising when there are no effects of K .  This is the 
traditional approach to such problems (see for example, p. 345 of Batchelor 1 9 5 2 ~ ) .  
The technique uses certain conserved quantities associated with r, and has some 
points in common with one described by Lumley (1964). The effects of K on these 
results are investigated in $4,  and it is shown that these are profound. 

2. The consequences of some conservation relations for a cloud of 
marked fluid particles 

For a cloud of marked fluid particles there are no effects of molecular diffusivity. 
Hence the quantity of contaminant within each fluid particle remains constant during 
each realization so that, iff is any function, 

D 
Dt 
---f(r) = 0. 

Of course this also follows immediately from (1 .1)  with K = 0. On integrating (2.1) 
over the flow field, there follows 

(2.2) fi dt S-f(r)av = 0. 

Withf(F) = I', (2.2) gives the obvious result from mass conservation, viz. 

J r d V  = Q ,  (2.3) 

] C d V  = Q,  JcdV = 0. (2.4) 

I F2dV = Qa/L& (2.5) 

and on taking the ensemble mean, using (1.3), there results that, for all time in each 
realization, 

Slightly less obvious, and equally important, results are obtained by taking 
f(r) = r2 in (2.2), so that 

where Li is determined entirely by the prescribed initial distribution, and is equal 
to the volume of marked fluid if this initial distribution is spatially uniform. Taking 
the ensemble mean gives 

/ C 2 ( ~ , t ) d V + S F ( x , t ) d V  = Qa/L$. (2.6) 

1 C2(x, 0) d V = Q2/Li,  I."(x, 0) dV = 0. 

Since the initial distribution is prescribed, c(x, 0 )  = 0, so that further consequences of 
(2.6) are 

(2.7) 
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However, if, a t  time t ,  C is of order &/L3 over most of the cloud, as given by (1.8), it 
also follows from (2.6) that, as t - f co ,  

Thus, while the total amount of ‘r2-stuff’ in a cloud of marked fluid particles is 
conserved and is initially all C2-stuff, it is ultimately all converted into3-stuff. 

Assuming t h a t 2  has a magnitude which is of the same order over the whole cloud, 
it is clear from the second of (2.8) that  ultimately 

- 
~2 = O(Q’/L$ L3). (2.9) 

Now experiments suggest that the estimate (1.8) for the magnitude of C is observed 
very soon after release, following an initial period of adjustment, and there seems no 
reason to doubt at this stage that the same will be true for this estimate of the magni- 
tude of>. Of course both estimates can be correct only approximately, though with 
an accuracy increasing with time. There must be other terms [presumably of order 
less than (1.8) or (2.9) by a power of Lo/L] to account for the transition from the 
initial to the ultimate state. 

Another simple argument confirms the estimate (2.9).  Consider one realization of 
the dispersion. By incompressibility the volume of marked fluid remains constant a t  
its initial value which is of order Lg. But the orientation and shape of this volume are 
not fixed since they depend on the particular velocity field during this realization. 
What can be said is that the constant volume of marked fluid is somewhere in a region 
of space surrounding the centre of mass of volume of order L3, with the statistical 
properties of the position of the marked fluid within this region being determined 
entirely by the statistical properties of the velocity field. Thus I’ has a value of order 
&/Li within a volume of order L;, but is elsewhere zero. Now the probability that any 
particular point within the region of volume of order L3 lies in marked fluid is, for 
most points, of order Lg/L3 so that the ensemble mean of any function f(r) is of order 
f(&/Li) x Lg/L3. In  particular C, the ensemble mean of I’, is of order Q/L3, consistent 
with (1.8), while = Cz+F, and since L 9 Lo, the 
estimate (2.9) is recovered. 

There are two immediate important consequences of the estimates of the magnitudes 
of C a n d y .  First, it follows from (2.9) that theoretical discussions of concentration 
fluctuations are valueless unless they take account of the finite initial size of the 
cloudt; this was not done by Csanady (1967). Second, z/C2 is proportional to (L/Lo)3 
and will vary significantly from one set of experiments to another unless L/Lo is the 
same. Although this argument ignores the possible effects of K ,  it  gives one cause for the 
observed variation in SIC2 reported in 9 1.  

The above probability argument can also be applied to the function p ( y ,  t ) .  For, 
in each realization, 

is of order &2/L! L3. Since 

F(X) r ( x  + Y) dV7(X) 

is of order (&2/L$) L; = Q2/Li, so that its ensemble mean is, at least for most points, of 
order (&2/Lg) (Li/L3) = &2/L3. Thus, using the definition o f p  in (1.4), the result (1.9) 
is obtained. 

t In particular there is no point in considering an initial point source. 
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The experimental evidence reported in § 1 suggests that the distributions of C, 3 
and p are approximately self-similar, a t  least to the degree of spatial resolution 
attained. I n  a case when the governing scales of turbulence are isotropic, which 
frequently occurs with relative diffusion in natural flows because of the wide range of 
length scales lying in the inertial subrange, it follows that, if (1.8), (2.9) and (1.9) hold 
evervwhere. 

(2.10) 

3. The existence of a core for a cloud of marked fluid particles 
The new estimate (2.9) for the magnitude 0 f 2 ,  and the equations (2.10) for the 

distributions of C , 2  a n d p  (when these are self-similar and the turbulence is isotropic) 
were derived with certain reservations. The most notable of these are that inferences 
were drawn from observations in which the finest scale structure could not be resolved, 
and the possibility, mentioned in the probability arguments in $2,  that there are 
some points whose probability of lying in marked fluid is not of order Li/L3. In  this 
section, where K is still assumed to have no effect, the importance of these reservations 
is investigated. 

When K = 0, the function p(y,  t )  has a simple interpretation for the case when the 
initial distribution of contaminant is spatially uniformt (Richardson 1926; Batchelor 
1 9 5 2 ~ ) .  Then L!p(y,t) is the ensemble average volume of marked fluid within which 
the point x can lie so that the point x + y also lies in marked fluid. It is then immediate, 
as Batchelor (1952~)  pointed out, that, for all t ,  

p(0,t) = L53 when K = 0. (3.1) 

Notice that (3.1) also follows when (2.6) is used in (1.4), since p ( x )  = C2(x)+qx). 
This gives a simple practical interpretation to the value ofp(0, t ) ,  as requested on p. 90 
of Csanady (1973). This is that it is constant because the quantity of contaminant 
within each fluid particle remains equal to its initial value. 

One striking and surprising consequence of (3.1) is that there must be a core region 
surrounding y = 0 in which the magnitude of p changes from its constant value at 
y = 0 given by (3.1) to decreasing bulk values of order L-3 given by (1.9). The normal- 
ization condition (1.5) presumably ensures that the thickness of this core region 
decreases with time. It also follows from (3.1) that the distribution of p can never be 
self-similar. 

The result (3.1) is not consistent with the estimate (1.9). (It was however noted in 
$ 1  that the observations by Sullivan (1971) from which (1.9) was inferred did not 
support it near y = 0.) Therefore the probability argument used in 2 to derive (1.9) 
must fail near y = 0. Since, in relative diffusion, the origin is a special point in each 
realization, i.e. the centre of mass of the distribution of contaminant$, the obvious 
reason for breakdown is that the probability of a point sufficiently near the origin 
lying in marked fluid is not of order Lg/L3 as assumed, but, to be consistent with (3.1), 
of order 1. It will be shown in this section that this proposition is correct in many 

t Although (3.1), and the subsequent argument, remain valid whatever the initial distribution. 
$ The centre of mass can be defmed only if there is a finite quantity of contaminant, i.e. only 

if the statistical properties of I' are inhomogeneous. 
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FIGURE 1. Sketch illustrating the value of q(y, t )  defined in (3.6). The shaded region is that common 
to the two congruent ellipsoids, and is equal to Lt q(y, t ) .  When - y lies outside the large ellipsoid, 
p is zero. 

flows and has important consequences, particularly when effects of K are considered 
(as they will be in § 4). 

An exact solution 
Although (3.1) holds in all flows, so that the distribution of p always has a core and 
can never be self-similar, it  is valuable to examine its detailed structure for a class of 
exact solutions, especially for the insight this gives on the conjectured breakdown 
of the probability argument (used for the magnitudes of C and c", as well as p )  for 
points near the origin. This class of exact solutions is such that axes can be chosen for 
each realization so that, throughout that realization, 

r = (a, x,,a2 x2, a3 x , ) ,  (3.2) 

where a,, a2, a, are the same for each realization of the ensemble, and will be taken 
to be constant in time. The sole random feature is thus that the directions of the axes 
with respect to which (3.2) holds differ from one realization to another; hence ensemble 
means are obtained by averaging over all possible directions, assumed here to be 
distributed uniformly in space so that r has statistical isotropy. This class of exact 
solutions has been widely used with results that are often applicable more widely 
than anticipated (e.g. Townsend 1951; Batchelor 1959; Saffman 1963). 

By incompressibility 
a,+a2+a,  = 0. (3.3) 

a, < a, < a,, a, < 0, a, > 0. (3.4) 

Without loss of generality take 

Then an initially spherical volume of marked fluid of radius a becomes after time t 
an ellipsoid of the same volume with semi-axes a, = aexp (ai t )  (i = 1, 2, 3), where, 
by (3.4)) for moderate and large t ,  

a, 4 a 4 a,. 
For simplicity consider the case when the initial marking is uniform (although the 

general conclusions below remain valid for all initial conditions except those in which 
for example the marked fluid forms a torus). Then it is easy to see that, for all time, 

(3.5) 

~ ! & - ' J r ( x ) r ( x + ~ ) d ~ ( x )  = L ! ~ ( Y , ~ I ,  (3.6) 

say, is the volume common to two ellipsoids; one is that in which the marked fluid lies, 
and the other has axes equal and parallel to those of the first, but its centre at the 
point with position vector - y  relative to the centre of the first (see figure 1). As is 
obvious from figure 1, q(y, t)  is zero unless 

Y? YZ Y; - 4 d 2 ,  0 < d < 1 where -+-+--, - 
a: a; a, (3.7) 
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q(y, t )  = ~ L T ~  (2 - 3d + d3), (3.8) 

where, by definition, L! = +.nu3. Now the ensemble mean of q(y, t ) ,  obtained by 
averaging over all the possible and equiprobable orientations of the ellipsoids in space 
while keeping y unchanged, is p ( y , t ) ,  using (1.4) and (3.6). Obviously p ( y , t )  is 
independent of the direction of y, and, from (3.7)) is non-zero provided IyI < 2a3; it 
is also clear that L(t), the spread of the cloud, is of order a3 = aexp (a3t).  It follows 
from (3.7) that the value of p(y, t )  is non-zero for all the ellipsoids considered in the 
averaging provided IyI < 2a,. Thus, using (3.8), $(y , t )  is of order L;3 for such y 
[withp(O,t) equal to Lo3, in agreement with (3.1)]. However, if JyI is of order L (i.e. of 
order a3) it  also follows from (3.7) that p(y, t )  is non-zero only for a fraction of order 
L:/L3 of the ellipsoids so that, again using (3.8), p ( y ,  t )  is of order L-3 for such y in 
agreement with (1.9). Detailed mathematics confirming these order of magnitude 
results is given in the appendix. 

Consider now the way in which F(x, t )  andi?(x, t )  depend on x when the marked 
fluid is initially distributed, not necessarily uniformly, over a sphere. By means of 
arguments analogous to those just used for p it follows that F is of order Q/L! and 
is of order Q2/LZ when 1x1 < a,?, and that F is of order Q/L3 andi? is of order 
Q2/L;L3 when 1x1 is of order L. Since P = C a n d r 2  = C 2 + q  it follows that [always 
assuming ( 3.5)] 

and that 

- 
C = O(Q/L!), c2 = O(Q2/LZ) for 1x1 < a,, (3.9) 

- 
C = O(Q/L3), c2 = O(QZ/Lg L3) for 1x1 = O(L) .  (3.10) 

Some detailed mathematics supporting these results is also given in the appendix. 
Thus, for this particular velocity field, the distributions of C a n d 2  (as well as that 

of p )  have a core of thickness tending to zero as t+co (since a, = aexp (a,t) and 
a, < 0) within which both C and> have magnitudes of order equal to those given 
by the initial distribution. Outside this core however, the magnitudes decrease to 
zero as t increases, with values in the bulk of the cloud given by (3.10), which is, of 
course, consistent with the earlier estimates (1.8) and (2.9). 

More general velocity Jields 
It is now apparent how the probability argument used in $ 2  to justify the estimates 
(1.8) and (2.9) for the magnitudes of C and 2 is, in general, too superficial. In  the 
exact solution the centre of mass, and points in a small volume of decreasing size 
surrounding it, lie in marked fluid with probability 1, i.e. for all realizations of the tur- 
bulence. It is only for points in the bulk of the cIoud that the probability of lying in 
marked fluid is of the order assumed in the probability argument, viz. L!/L3. 

Does a simiIar argument, leading to a core-bulk structure, apply in flows in which 
r is not given by (3.2) Z It seems certain that in many flows the answer to this question 
is yes; all that is necessary is that in the early stages of most realizations of the dis- 
persion the initial cloud of marked fluid is deformed into an elongated shape (which, 

= @/Lo when 1x1 < a, for the special cam when the initial 
marking is uniform. 

t Note that = &/L: and 
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unlike in the exact solution, may also be distorted and fibrous a t  the edges) with 
maximum dimension of order L(t),  and that the centre of mass lies in marked fluid 
not necessarily certainly but in a fixed proportion of these realizations. In  such 
circumstances C a n d 2  still have magnitudes of order Q/L! and Q2/Lt in a small 
volume whose linear dimension is of the order of the minimum diameter of the 
elongated cloud at  time t, while in the bulk of the cloud C and> have magnitudes of 
order Q/L3 and Q2/L$ L3. (Indeed the above conditions are too restrictive for the 
existence of a core-bulk structure. Even if the probability that the centre of mass 
lies in marked fluid is not fixed, but decreases with time less rapidly than Li/L3, 
cores exist in the distributions of C and 2.) 

It is not possible at  the moment to give a precise description of those turbulent 
velocity fields which satisfy the above conditions, and further investigation of this 
question would be valuable (though difficult) in view, especially, of the crucial role 
of the core on the effect of K (to be described in 9 4). Granted though that the velocity 
field considered in the exact solution, which certainly yields a core-bulk structure, has 
given accurate predictions over length-scales larger than those over which it can be 
expected to hold (Townsend 1951; Batchelor 1959; Saffman 1963), and granted the 
common observation that clouds of contaminant do tend to become more elongated 
with time, it is natural now to propose the existence of a core-bulk structure in a 
wide range of cases, and to investigate the consequences of this proposal further. 
Obviously the details of the core structure, of the transition from the core to the bulk, 
and of the bulk region itself, depend on the detailed statistical structure of the velocity 
field. 

In the argument so far in this paper no use has been made of the equations satisfied 
by the statistical properties of J?, in particular of those satisfied by C and 3. Indeed 
one of the most important themes has been, in fact, that these statistical properties 
can never be observed in one realization. No core or bulk region is proposed (or indeed 
exists, except for very special initial distributions) for the distribution of I' in one 
realization, and, when such structure exists in the distributions of the statistical 
properties of I?, it does so entirely as a result of the processof taking the ensemble 
average. Nevertheless, some interpretation of the proposed structure in terms of 
hypothetical processes such as production and transfer of z i s  useful, if only to 
emphasize the fundamental differences between it and that often put forward, and 
described e.g. in Csanady (1973). 

The equations governing the distributions of C and 3 are obtained from (1.1) with 
K = 0, (1.2) and (1.3), and are: 

ac/at+v.(uc+uc) = 0; (3.11) 
- 

- -  
- + v . ( u c 2 + u c ~ ) + 2 u c . v c  at = 0. (3.12) 

In (3.12) the divergence term has zero integral over all space and, using conventional 
language, represents the transfer o f 2  from place to place. On the other hand the 
term 2 E .  VC has a non-zero integral over the flow field and is conventionally described 
as the production of> (by feeding from the distribution of C through the mechanism 
described by the term in (3.11) involving s). To illustrate the consequences of the 
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proposed structure on the interpretation of (3.11) and (3.12) consider a special case 
when U = 0 and both the turbulence and the initial distribution of contaminant are 
spherically symmetric, conditions satisfied, for example, in the exact solution con- 
sidered above. Suppose further that the distributions of C and 2 are self-similar 
in the bulk region, so that they satisfy (2.10) there. On substituting C = (Q/L3) F(R) 
in (3.11), where 

R = x /L ,  R = IRI, (3.13) 
it  follows that 

UC = (QL/L3)RF. (3.14) 

Thus the production term in (3.12), viz. 2G. VC, is of order Q2L/L7 and is negligible 
compared with the term a>/at, which, using 3 = (Q2/L! L3) J (R)  from (2.10), is of 
order Q2L/L; L4. Since the production term is of no consequence in the bulk, the 
rate of change o f 3  at  any point there is determined entirely by transfer. It is then 
immediate, on substituting into (3.12), that 

- 
uc2 = (Q2L./L: L3) RJ,  (3.15) 

so that, in the bulk, the transfer of 3 is everywhere outwards. 
In  contrast with what happens in the bulk region, the production of 3 is not 

negligible in the core region. Consider for example the case when the core region has 
dimension of order L,(t), and C a n d 2  have magnitudes of order Q/L$ and Q2/Lt 
there - their values in the exact solution. Then, from (3 .11) ,uc  is of order QL,/Lg 
in the core, so that all terms in (3.12) are of order QZf;,/L! L,. T h e 2  produced in the 
core is transferred outwards across the cloud, a t  a rate given by (3.15) far enough 
away from the core. As a result of production in the core and the consequent transfer 
outwards, the core radius decreases, but at no time is the spreading taking place 
uniformly over the whole cloud. 

As explained earlier, the detailed shapes of the distributions of C and 3 depend 
on the detailed structure of the velocity field. It will be shown in a later paper that 
in many cases it is possible to match the distributions in the core directly onto those 
in the bulk. To illustrate what is involved, one special case is discussed briefly. Suppose 
that, in the exact solution defined by (3.2), (3.3) and (3.4), 

a, < 0, a2 = a3 > 0. (3.16) 

Then an initial sphere of marked fluid is deformed into a flat ellipsoid of revolution, 
and the core thickness, say L,(t), is of the order of the minimum diameter of this 
ellipsoid. Hence, by conservation of mass, 

L, = O(L!/L2). (3.17) 

If the distributions of C a n d 2  are self-similar in the core, they have the forms 
- 

C = (&/L!)~(P) ,  c2 = (Q2/L!)j(p), (3.18) 

where P = x/L,, P = \PI .  
It then follows from (3.11) that 

(3.19) 

(3.20) 
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and thus from (3 .12)  that 

Since both f’(s) and j ’ ( s )  are expected to  be negative, h(p)  is positive. Now it can be 
shown that, in this case, the two expressions (3 .15)  and (3 .21)  f o r 3  are mutually 
consistent in an overlap region satisfying L, < 1x1 < L provided their orders of 
magnitude are equal. Thus L, is negative as expected, and further 

LJL! K - L p ;  L3 3 L, K L;p, (3 .22)  

which agrees with (3 .17 ) )  obtained by an independent argument. But i t  must be 
stressed that this is only one of many possible examples. 

4. The effects of molecular diffusion 
The important transfer processes represented by the terms V .(uc) and V . (uc2) in 

(3 .11)  and (3 .12)  respectively are conventionally modelled using eddy diffusivities, 
but in the arguments above proper account has been taken of these terms, without 
empiricism. If the proposed core-bulk structure for a cloud of marked fluid particles 
does not fully describe a real cloud of passive contaminant, it follows that the differences 
are due entirely to  the single process so far ignored, viz. molecular diffusion. As will 
be shown, there are such differences, and these are not just minor perturbations, 
but differences in fundamental structure. It then follows further that molecular 
diffusion is an essentially different physical process, both fundamentally and in its 
practical effects, from those represented by V . (uc) and V . (uc2) Thus the concept of 
an eddy diffusivity must be physically incorrect and, in the end, practically inadequate. 

The  differences between a real cloud and a cloud of marked j luid particles 

As a result of molecular diffusion, molecules of contaminant cross the boundaries of 
fluid particles. When this process has had a significant cumulative effect i t  becomes 
meaningless to  refer to  marked fluid particles and, a fortiori, t o  consider the mass of 
contaminant contained within one marked fluid particle, It is certain that ultimately 
the smoothing effect of molecular diffusion will cause the values of C a n d 2  in the core, 
and elsewhere, to  decay eventually to zero. Molecular diffusion also affects the total 
amount of F-s tuff ,  for, on multiplying ( 1 . 1 )  by il7, integrating over all space, and 
taking the ensemble mean it follows that 

The term on the right-hand side is always negative so that, inevitably, 

/ F d V + O  as t+m. 

/ C 2 d V + 0  as t - t oo ,  
Since, from ( 2 . 8 ) )  
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for a cloud of marked fluid particles, and therefore for a cloud of contaminant molecules, 
it follows from (4.1) and (4.2) that  

J’FdV+o as t+m,  (4.3) 

in contrast with the result in (2.8) for a cloud of marked fluid particles. 
Obviously the results just derived show that the core-bulk structure in a cloud of 

marked fluid particles is ultimately, a t  least in the form presented above, an inadequate 
description of the structure of a real cloud. The remainder of this paper aims to 
investigate the physics leading to these results and to present a modified structure 
consistent with them. 

As a result of advection the minimum thickness of all parts of a cloud of marked 
fluid particles shrinks to zero as t - t  co, resulting in a continual increase in the gradients 
of I? across the thinnest part of the cloud and thus, in a real cloud, in a continual 
increase in the effect of molecular diffusion tending to widen the distance over which 
the contaminant is spread. As Batchelor (1952b) points out, these two competing 
effects are eventually in balance when the minimum thickness of all parts of the cloud 
is of order A,, where 

is the so-called conduction cut-off length. Subsequently the minimum thickness of the 
cloud remains constant but gradually decays to zero as a result of the diffusion of 
molecules down its gradient. 

On the other hand the largest dimension of a cloud of marked fluid particles, which 
is of order L(t) defined in (1.6), grows at an increasing rate as t+m, resulting in a 
continual decrease in the gradients of I? along the parts of the cloud which are being 
stretched and thus in the flux of contaminant molecules in this direction. Hence there 
is little effect of molecular diffusion on the rate of increase of L. 

h, = ( V K 2 / € ) * ,  (4.4) 

An analysis of some exact solutions 
Consider once again the class of flows for which an exact solution is available when 
K = 0 ,  i.e. those flows for which axes can be chosen in each realization so that the 
velocity field is given by (3.2). As shown by the authors referred to earlier, the equation 
governing r, viz. (l.l), can be solved exactly even when K $: 0. The details given in the 
appendix show that when the initial distribution of contaminant has spherical sym- 
metry, then it remains true when K + 0 that surfaces of constant I? are ellipsoids. 
But these ellipsoids differ from the equivalent ones when K = 0 in the following ways. 
When K = 0,  the ellipsoid containing a constant fraction f of the contaminant has a 
constant volume of order fL;  (and equal to fL; if the initial distribution of contaminant 
is uniform) but, when K $: 0, the ellipsoid containing the same constant fraction of the 
contaminant has an increasing volume. Let the semi-axes of the ellipsoid be 

A, ( f , t )  (i = 1,2,3) ,$  

A,  < A ,  < A,. 
where, without loss of generality, 

It follows from the results in f~ 3 of this paper that, when K = 0, Al+O as t+m, 
A,  = O(L)- too as t-+coandA,A,A,is a constant of order $5:. But, when K $I 0,  the 

t When K = 0, di(l,  1 )  is of course equal to at, defined immediately before (3.5). 

(4.5) 
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a/ 

FIGURE 2. The effect of molecular diffusion on the variation of (L:/&(8*)) C(0, t )  according to 
(A is). -, K = 0; x ,  Z ~ K / U , L , ~  = 10-1; 0, 2 n ~ / a , ~ 2 ,  = 10-3; O, ~ ~ K / u , L ;  = 10-5. 

mathematics in the appendix confirm the arguments earlier in this section that A, 
tends to a constant of order A,, A, is negligibly affected by K and A,A2A3-+m as 
t+m. 

Consider now the special case of (3.2) when 

a, < 0, a2 = ag > 0. ( 4 4  

Then, in each realization, each of bhe ellipsoids containing a given constant fraction 
of the contaminant is a flat ellipsoid of revolution of thickness of order A, and of 
increasing radius L. Thus A, A ,  A,  is of order L2A,, and in each realization is of 
order Q/L2A, within the ellipsoid. On taking the ensemble mean it follows, exactly as 
with a cloud of marked fluid particles, that, ultimately, 

- 
C = 0(Q/L2A,), c2 = O(Q2/L4A,2) for 1x1 5 A,, (4.7) 

C = O(Q/L3), c2 = O(Q2/L5A,) for 1x1 = O(L). (4.8) 
and that - 

These are to be compared with the earlier results (3.9) and (3.10) for a cloud of marked 
fluid particles. There is still a core-bulk structure, but now the core has constant 
thickness of order A, and the magnitudes of C a n d 2  within i t  decay to zero, albeit at  
slower rates than in the bulk. I n  each realization the largest derivatives of are 
across the ellipsoid and thus of order Q/L2A;. Since - 2 ~ 1  (Vr)2d V ,  the right-hand 
side of (4.1), is of the same order as - 2 ~ j  (VI ' ) ,dP,  it now follow$ from (4.1) that, since 
ultimately3 + C2 in the bulk according t o  (4.8), 

(4.9) 

The exact results in the appendix are consistent with (4.7)-(4.9). Figures 2 and 3 
show how, according to  these exact results for a particular initial distribution, C(0, t )  
and 1 C2d V vary with t. 

Another special case of (3.2) can be analysed in a similar way, viz. that  when 

cL1 = a2 c 0, a3 > 0. (4.10) 
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0 I 2 3 4 

- Cd 

FIGURE 3. The effect of molecular diffusion on the variation of (L;/Q2) Sc2dV according to (A 19). 
-, K = 0; x , 2 7 ~ ~ / a ,  L; = 10-1; 0 , 2 7 ~ ~ / a ,  L; = 10-3; 0,27T~/a, L; = 10-6. 

In this case a constant fraction of contaminant is contained in an ellipsoid of revolution 
which is cigar-shaped (rather than disk-shaped when (4.5) holds). Both small semi- 
axes of the ellipsoid eventually have constant lengths of order A, with only the long 
axis having a length of order L. Thus A ,  A ,  A ,  is now of order LA: so that the results 
corresponding to (4.7)-(4.9) are: 

- 
C = O(Q/LA:),  c2 = O(Qz/LZA:) for 1x1 5 A,; (4.11) 

C = O(Q/L3) ,  c2 = O(Q2/L4Az) for 1x1 = O(L) ;  (4.12) 
- 

(4.13) 

For values of a,, a,, a3 not satisfying (4.5) or (4.10), the results corresponding to 
(4.7)-(4.9) and (4.11)-(4.13) are in between them. 

The Jinal stages of decay of a general cloud 

The linear velocity field given by (3.2) is in theory a good approximation only if L 
is of order no bigger than (v3/e)*, the viscous cut-off length. But Townsend (1951) 
showed that in one case (the decaying isotropic turbulence behind a grid, at grid 
Reynolds numbers ranging from 2700 to 10 820) this velocity field correctly predicted 
the decay of C(0, t )  with t up to values of L greater than 15(v3/e)*t. Although (3.2) 
does not describe the velocity field for such (relatively) large clouds, Townsend 
concluded that its use, nevertheless, predicted correctly the gradients of r (except 
perhaps when the cloud has become so extended that substantial parts of it are folded 
back on themselves, when the results described in Kraichnan ( 1  974) will certainly be 
relevant). Since it is the size of these gradients that alone determine the effects of 
molecular diffusion it seems reasonable to propose that, for a cloud of arbitrary size, 

t Note that, to account for the decay of the turbulence, Townsend prescribed a,, all a3 in 
(3.2) to be inversely proportional to t .  Although such variation is not explicitly considered in 
the present paper, results like (4.7)-(4.9) are unaffected since they are expressed in terms of L, 
and are therefore independent of rate-of-strain history (except insofar as this determines L). 
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the magnitudes of C and 3 in both the core and the bulk, and the rate at which 
j 2 d V  decays, are given ultimately by results between those in (4.7)-(4.9) and those 
in (4.11)-(4.13). Furthermore, since the significant effects of molecular diffusion occur 
largely, in effect, near the boundaries of the core and are then transferred outwards, 
it seems possible that the shapes of the distributions of C a n d 2  in the bulk are not 
greatly affected by molecular diffusion, irrespective of the size of the cloud. Practical 
formulae consistent with the above suggestions are, for example: 

- 
C = O(Q/LnA:-n), c2 = O(Q2/L2nAt-2") for 1x1 5 A,; (4.14) 

C = (Q/L3)F(lxI/L), cz = (Q2/L3+nA:-n) J(lxl/L) for 1x1 = O ( L ) ;  (4.15) 
- 

(4.16) 

where F and J are the functions defined originally in ( 2 .  lo), and n is a number between 
1 and 2 ,  which can be a slowly varying function of the variables describing the 
statistics of the velocity field, and those like &/Lo, which describe the initial state of 
the cloud. It is hoped that these proposals, presented here without full justification, 
may be examined further, both theoretically and experimentally. 

The  effect of the initial distribution of contaminant on the final decay 

All the discussion in this section, including that leading to (4.14)-(4.16), has been 
concerned with the final period of decay when the core thickness has reached its 
constant asymptotic value of order A,. But another important question is how the 
transition to this final period depends on the initial distribution of contaminant, 
particularly on Lo. Evidently Lo influences the size of L, but not, according to (1.7), 
the rate a t  which L ultimately increases with t .  But there is a more interesting pos- 
sibility if Lo is sufficiently large, which is that a real cloud may disperse as a cloud of 
marked fluid particles for a substantial period. This will occur when the minimum 
thickness of the dispersing cloud in each realization is much less than L but also much 
greater than A,. For then the argumenk in this section show that the effects of mole- 
cular diffusion are still practically insignificant, while the arguments in $ 3  show that 
there is already a core-bulk structure satisfying (3.9) and (3.10). For the special case 
when (3.2) and (4.6) hold, this is confirmed by figures 2 and 3 which show that C(0, t )  
and s d  V behave as for a cloud of marked fluid particles for a period of time which 
increases with a3 L;/K, which, by (4.4), is of order L:/AE since a3 is of order (c/v)) 
(Townsend 1951). Since typical values of A, in the surface layers of the atmosphere 
and in the ocean are 10-3m and lO-5m respectively (based on values of 6 quoted in 
Sullivan, 1971, and on p. 480 of Monin & Yaglom, 1975) it can be anticipated that, in 
most practical cases, the effects of molecular diffusion will take some time to become 
important. 

Paul J. Sullivan acknowledges financial support from the National Research 
Council of Canada during the period when this work was carried out. 



362 P. C. Chatwin and P. J .  Sullivan 

Appendix. Mathematical details for the class of exact solutions 
This appendix justifies some results in the body of the paper for the case when 
is given by (3.2). 
Suppose first that there is no molecular diffusion, and that the initial distribution of 

contaminant is given by 

where, according to the definition in ( 2 4 ,  

as = (3/4n) L!. (A 2) 

Then, when (3.2) holds, the subsequent distribution of contaminant satisfies 

(A 3) 
3Q/4na3 for + + (x3/aJ2 < 1, 

0 otherwise, 
r(x, t )  = 

where, for i = 1, 2, 3, 
a, = aexp(ait). 

The function Lf) q(y, t )  defined in (3.6) is, as explained in the text and illustrated in 
figure 1, the volume common to the ellipsoids 

@1/aJ2 + (x2/a2)2 + (x3/a3I2 = 1 

(x1+ Y l ) ” 4  + (x2 + Y2)2/aaa + (x3 + Y 3 ) 2 / 4  = 1. and 

Now under the transformation of co-ordinates x, = a, Xi, yi = a, Yi (i = 1 , 2 , 3  and no 
summation) the ellipsoids become the spheres 1x1 = 1, (X+YI = 1. These spheres 
intersect only if JYJ < 2, i.e. only if 0 < d < 1, where ]YI = 2d, consistent with (3.7). 
Then the common volume in X space is 

2nId1 (1-22)dz = Qn(2-3d+d3), 

so that Ltq(y, t ) ,  the common volume in real space, is 

#nul a2 a3(2 - 3d + d3) .  

Since a, u2 a3 = u3 = (3/4n) L& this is the result in (3.8). The distance-neighbour func- 
tion p ( y , t )  is the ensemble mean of q(y, t ) ,  obtained by averaging over all possible 
positions of the axes with respect to which (3.2) holds. Thus, assuming isotropic 
turbulence, 

i P I -  

where y = IyI and the integral is over the sphere of radius y. The result is expressible 
in closed form only for special values of al, a2, a3, of which that when (using incom- 
pressibility which requires a, + a2 + a3 = 0) 

az = a3 > 0, a1 = -2a3 < 0 (A 6) 
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will be the only one considered here. It is typical in all important respects. The result 
of the integration is 

for 2 < 2N-l, 

(A 7)  
3(4 - 2')) 32(4 - 2')) 

[ 64 128 8 
32, 321 

[ (4 - ;)4 + 21) + In 

for 2N-1 < 2< 2, 
0 for 2 2 2, 

where Z = y/a,, N = a3/a1, E = (N2- l)t. (A 8) 

Noting that 
L(t) = O(a,) for N % 1 

(i.e. for exp (a,t) 9 1 from (A 6) and (A 8)), it is straightforward to verify that p ( y ,  t )  
satisfies all the conditions stated in the body of the paper. 

When the conditions necessary for (A 7 )  hold (i.e. when the initial distribution is 
uniform over a sphere of radius a, when there is no molecular diffusion and when 
(A6) holds), it is easy to show by taking the ensemble mean of (A3) that, writing 

r =  1x1, - 
C(X, t )  = (Q/-wf(r ,  t ) ,  c2(x, t )  = (&'/G){f(r, t )  - f  Yr, t ) } ,  (A 10) 

(1  for r < a,; 

where 

(0 for r 2 a3. 

Thus (3.9) is satisfied immediately, while (3.10) follows almost as quickly by noting that, 
from (A 1 l) ,  f is of order al/r for r 9 a,, and that, by incompressibility, 

al/r = a,ag/raZ = (3/4n) x (LilL3) x (L/r).  

The case of a uniform initial distribution without molecular diffusion is very special 
since the governing equation (1 .1)  is satisfied trivially. Full details of the exact general 
solution of (1 .1)  for arbitrary values of a, in (3.2), and for an arbitrary initial dis- 
tribution are given in Saffman (1963). To avoid complicated algebra adding nothing 
to the arguments in the present paper, the only results given here are for the simple 
(though essentially typical) case when (A 6) holds, and when the initial distribution 
of contaminant satisfies, consistent with (2.6), 

where, once more, r = 1x1. It can be verified by direct substitution in ( l . l ) ,  using 
(3.2) and (A 6), that 

r ( x , t )  = -exp 28Q [ -277 (3++)], xi+ 3 ab2 
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where a(t) and b(t) satisfy 
a 2 =  ( L : - ~ )  2 T K  e x p ( - 4 a 3 t ) + z , \  

013 

exp(2a3t)--. 
a3 

To determine C(r, t )  = fi and F(r, t )  = 
(A 13) has to be integrated over all possible directions of the axes. The results are: 

- (F)2, the appropriate function of I' in 

where 

From (A 15) and {A 16) are obtained 
8*Q C(0,t) = -; 
ab2 

From these expressions the graphs in figures 2 and 3 were drawn. The fundamental 
Iength L(t), defined in (1.6)' is found to satisfy 

(A 20) 
1 

477 
L2(t) = - (a2 + 2b2). 

Consider first the case when K = 0. Then for a3t 2 1, 

Lo 

a 1 L; 

M - exp (a3t) 9 Lo, LM -  b 
(2n)b (2n)b 

d M - M exp(-2a3t) w - - (2n)b (2np (2n)% L2 Lo* 

From (A 15) and (A 16) it now follows that for p = r/d 5 1 : 

These are entirely consistent with (3.9) and (3.18). Note that d(t) is a measure of the 
core thickness, and that it is of the same order as L,(t) defined in (3.17). On the other 
hand when p = r / d  1, it  follows from (A 15) and (A 16) that, writing R = r / L ,  
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These are entirely consistent with (3.10) and other results in the body of the paper. 
Mathematically one of the keys to the above results is that, when K = 0, ab2 = L$ 

for all t .  The physical significance of this is, of course, that the volume of any definite 
portion of marked fluid remains constant as t changes. 

But now consider what happens when K + 0. Noting that a3 is of order (s/v)B, it 
follows from (A 14) that, as t-tco, a tends to a constant of order A,, the conduction 
cut-off length defined in (4.4). On the other hand, provided Lg > A:, b z L,exp (Eat)  
which is the value given in (A21) when K = 0. Thus ab2 is of order L2A, for large t. 
This is consistent with the results in $4,  in particular with (4.7) and (4.8). It is to be 
noted also that the shapes of the distributions of C and> in the bulk (and in the core) 
are as in (A 24)) the results when K = 0. Once more this is consistent with the results 
in $4.  

For cases when the velocity field is given by (3.2) without (A 6) holding, it can be 
shown from the exact solution that the magnitudes of C a n d 2  when K = 0 are as in 
(A23) and (A24) since these depend only on the constant volume property, no$ on 
the details of the velocity field. But, when K =# 0, the magnitudes are affected by the 
details of the velocity field in the way, and for the reasons, described in $ 4. However 
the shapes of the distributions in both cases do depend on the values of a1, a,, a3. 
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